Dynamic fonts

Jacques André' and Bruno B{}I‘ghji

T INRIA/IRISA Campus de Beanlieu
F-35042 Rennes, France

I Metasoft

13 Rue Duhamel

F-35000 Rennes, France

ABSTRACT : Dynamic fonts are fonts whose character shape is defined every time the correspond-
ing character is printed rather than when the font s defined as a whole. Such lonts allow, for example.
random characters (such as graffin), context dependencies (as in logo design and calligraphy), or
character extension (as in the justification of semitic text).

KEYWORDS: Dynamic fonts, PostScript, PUNK, print-time.

I Introduction
Characters belong to one of the two following classes:

Static fonts The characters are designed, then cut or digitized and finallly used
a printing process. Almost all fonts belong to this class. Example: the Times
Roman font (see figure 1, where all *A’s have the same shape).

AAAAA

Figure 1: Static font: Times-Roman — All *A’s are identical

Included in this class are random fonts such as PUNK designed by Donald
Knuth [Knuth88]: A meta-font [Knuth82] is defined, the characters are digi-
tized with a shape that depends on parameters defined at compile time, then
they are used in a prinfing process.

Figures 2.left and 2.right show roman-PUNK and bold-PUNK fonts: In each
tont, the “A’’s have the same shape, although since the two fonts were gener-
ated with random numbers they produce “A”s of different shapes.

Dynamic fonts 199

AAAAA AAAAA

Figure 2: Static random fonts: PUNK-Roman (left) and PUNK-Bold (right) fonts — Note
that the “*A’”s are identical within each font but differ from one font to the other.

Dynamic fonts On the other hand, in this class of font the characters are redefined
at each instantiation (every time they are printed) rather than when the font is
defined as a whole. The “A”s of Figure 3 come from the same font: however,
because each of them has been computed at print time with random numbers,
they are all different.

Similarly, all handwritten “fonts” (handwritten alphabets, calligraphic letters,
graffiti, and even hand-printed capitals) are dynamic because of individual

A

Figure 3. Dynamic font: Although these characters were generated with the single
PostScript * (ABARA) show’ instruction, they are all different.

2 Dynamic fonts and PostScript
METAFONT, being a batch font design system [Knuth85], does not allow PUNK
to be a dynamic font. On the contrary, PostScript [Adobe85bgr] does support dy-
namic fonts. In fact, two operators control the PostScript font machinery: set-
cachedevice requests the machinery to transfer the bitmap of each character
into cache memory (from where it will be retrieved by using the show operator)
while setcharwidth states that the bitmaps are not to be placed into the font
cache. Thus, each time a given character 1s to be printed using a show instruction
its bitmap will be fully computed.

Dynamic fonts may be divided into three classes, according to the type of infor-
mation exchanged:

e the fonts are self-sufficient, no information needs to be passed on, The dy-
namic aspects of such fonts are governed exclusively by random functions.

e thecharactershapesdepend on a limited number of read-only parameters, such
as width expansion.

200 Jacques André and Bruno Borghi

¢ the character shapes depend on a large number of parameters, i.e. a context,
and conversely their design may modify the context.

3 Random dynamic fonts
Random functions may be used to produce random lines or random curves when
designing a character. Refer to figure 3 for an example.

Random functions may also be used to define geometrical transformations on a
character. For example, figure 4 was generated with a character definition calling a
function to rotate each character by # degrees where ¢ is randomly defined.

Figure 4; Scrabble, another dynamic lont

Besides graffiti and the like, such fonts may be used to produce characters for
the testing of recognition systems for hand-printed characters [Suen80].

4 Associating parameters

Semitic languages do not justily text in the same way that European ones do. As
a first approach, it can be said that instead of expanding spaces, some long charac-
ter forms are extended. Figure 5 shows the two justification methods, discounting
cultural considerations.

Extending tooth-letters 1s an easy process with PostScript: the coordinates of
control points defining the Bézicr splines that produce curved letters have to be mod-
ified depending on the expected justification. It works if the font is dynamic and the
expansion value 1s conveyed to the font machinery, e.g. through the stack. Figure 6
shows such dynamic modifications on a letler looking like an arabic letter (similar
lo a sfiin). The PostScript call is "6z dy (s) show'.

Dynamic fonts 201

the room
the room

Figure 5: Two methods of justification: the European method (top —spaces are expanded)
versus the Semitic method (bottom — certain long forms are expanded, here the arches of

the final “m”.

The aim of this example is not to offer new designs for character shapes, nor
1o modify existing ones, but rather to show that shapes can be defined at print time
instead of offering a limited set of expanded typefaces. Today, it seems that no soft-
ware 1s capable of composing Hebrew or Arabic texts properly. However, a few ad-
ditions would make TgX (at least its bi-directional version [Knuth & MacKay87])

a candidate for such languages.

v
v
o

Figure 6: Left dynamic extension of an arabic-like tooth letter;
grey part indicates the beginning of the line.

202 Jacques André and Bruno Borghi

5 Context dependence

The third class of dynamic letters requires a two-way exchange of information be-
tween a context (i.e. a set of variables) and the characters. The PostScript diction-
nary concept allows information to be sent to and Irom the [ont machinery. Figure 7
shows a piece of “calligraphy” printed in PostScript with a set of single * (1191 j)

show” instructions once the overall parameters (left and right limits, distance be-
tween horizontal lines etc.) have been passed to the font. The PostScript program
is given in the Appendix.

6 Conclusion

Why such fonts? First to reproduce the complexity of the real world, which is non-
deterministic (e.g. to simulate handwritten characters). Secondly. to revive the old
tradition which sometimes allowed typesetters to use various (clearly discrete) letter
widths (e.g. some types designed and cut by Rudolf Koch). And thirdly, to allow
character designers to invent new signs (one dares not call them letlers!) however
much classically-minded designers and typographers dislike the idea [Lauler87].

Dynamic fonts 203

References

[Adobe 85b] Adobe Systems Inc., PostScript language tutorial and cookhook, Reading,
Mass.: Addison Wesley, 1985.

[Adobe 85r] Adobe Systems Inc., PostSeript language reference manual. Reading,
Mass.: Addison Wesley, 1985.

[Adobe 88g] Adobe Systems Inc., PostScript language program desigi. Reading,
Mass.: Addison Wesley, 1988,

[Karow 87] Peter Karow, Digital formats for typefaces. Hamburg: URW Verlag, 1987,

[Knuth 82] Donald Knuth, “The concept of a meta-font”, Visible language, vol. 16 no.
1, 1982, pp. 3-27.

[Knuth 88] Donald Knuth, “A punk meta-font”, TUGhoat, vol. 9 no. 2, August 1988,
pp. 152—168.

[Knuth & MacKay 87] Donald Knuth & Pierre MacKay, “Mixing right-to-left texts
with left-to-right texts”, TUGhoar, vol. 8 no. |, April 1987, pp. 14-25.

[Laufer 87a] Roger Laufer (ed.), Le texte en mouvement. Presses Universitaires de
Vincennes, 1987.

[Laufer 87b] Roger Laufer, “Calligraphie synthétique animée™, Culture recliuigue, no.
17 (numéro spécial Electricité, Electronigue, Civilisation). March 1987, pp. 273-275.

[Suen er af. 80] Ching Y. Suen, Marc Berthod & Shunji Mori, “Automatic recognition of
handprinted characters: the state of the art”, Proc. IEEE. vol. 68 no. 4, April 1980, pp.
469487,

Appendix: A PostScript Program for Dynamic Fonts

% we follow the structure given in the example
% ''‘Building a new font’’ in [Adobe85r] -
% obvious definitions have been skipped

Kien s
/FontBBox [0 0 0 0] def % a dynamic font has no fixed BBox
Fin

=l

the definition of the letter i in the CharProcs dictionary

o

Dynamic data are recorded in Lhe Context dictionary.
These data are the Rx and Ry device space coordinates
of the current lower right limit of dynamic expansicn.

W

ol

Use of transform and itransform allows an absolute reference

to be kept independently of the scale of the font.

However, variation of the reference between instantiations
is properticonal to the scale.

R

A0 ol o

204 Jacques André and Bruno Borghi

/i —

250 0 setcharwidth % NOT setcachesdsvics
75 0 translate % left sidebearing
Context begin % get context

dﬂﬁ a

Ex Ry in the device space
% ¥y in the character space

Rx Ry itransform
/v exch def /x exch def

o

gsave

newpath 50 700 32 0 360 arc closepath % the dot on the i

100 600 moveto 0 600 lineto % top of the body

0 v translate % translate to bottom

0 100 lineto 2 left side of the body
0000 x 0 curveto % bottom of expansion

0 30 rlineto % right side of expansion
100 0 100 0 100 200 curvete % top of expansion
closepath % right side of the body
fill

grestore

x v 100 add transform $ update context (back
/Ry exch def /Bx exch def % 1 is stepping up

and % Context

“ def

Fon

/Dynamic newfont definefont pop

v

% Before the first use of the font, Context must be initialized

/Context 4 dict def % room for Bx, Ry, x; ¥y
Context begin

500 -100 transform

/Ry exch def /Rx exch def % lower right limit

% of the dynamic expansion
end % Context

% Now, try it
/Dynamic findfont 50 scalefont =etfont
100 0 moveto (iii) show

